
OpenAPI for Python
Release 0.0.1

Chris Modzelewski

Apr 13, 2019

CONTENTS:

1 Contributing to OpenAPI for Python 3
1.1 Design Philosophy . 4
1.2 Style Guide . 4

1.2.1 Basic Conventions . 4
1.2.2 Naming Conventions . 5
1.2.3 Design Conventions . 5
1.2.4 Documentation Conventions . 6

1.3 Dependencies . 7
1.4 Preparing Your Development Environment . 7
1.5 Ideas and Feature Requests . 7
1.6 Testing . 7
1.7 Submitting Pull Requests . 7
1.8 Building Documentation . 7
1.9 References . 8

2 Testing OpenAPI for Python 9
2.1 Testing Philosophy . 9
2.2 Test Organization . 10
2.3 Configuring & Running Tests . 10

2.3.1 Installing with the Test Suite . 10
2.3.2 Command-line Options . 10
2.3.3 Configuration File . 10
2.3.4 Running Tests . 10

2.4 Skipping Tests . 10
2.5 Incremental Tests . 11

3 Release History 13
3.1 Release 0.1.0 . 13

4 Glossary 15

5 OpenAPI for Python License 17

6 Installation 19
6.1 Dependencies . 19

7 Why OpenAPI for Python 21
7.1 Key OpenAPI for Python Features . 21
7.2 OpenAPI for Python vs Alternatives . 22

8 Hello, World and Basic Usage 23

i

8.1 1. Import OpenAPI for Python . 23
8.2 2. Load an Existing OpenAPI Specification . 23
8.3 3. Modify the OpenAPI Specification . 23
8.4 4. Validate Complete Specification for Error Checking . 23
8.5 5. Validate an HTTP Request . 24
8.6 6. Validate an API Response . 24
8.7 7. Output an OpenAPI Specification . 24

9 Questions and Issues 25

10 Contributing 27

11 Testing 29

12 License 31
12.1 Indices and tables . 31

Python Module Index 33

ii

OpenAPI for Python, Release 0.0.1

_static/open-api-logo.png

Serialization/De-serialization for OpenAPI Documents

Version Compatability

OpenAPI for Python is designed to be compatible with:

• Python 2.7 and Python 3.4 or higher, and

• OpenAPI Specification 3.0 or higher

Branch Unit Tests
latest

v.0.1

develop

CONTENTS: 1

https://github.com/OAI/OpenAPI-Specification/
https://github.com/insightindustry/open-api/tree/master
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/open-api/tree/v.0.1.0
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=v.0.1.0
https://github.com/insightindustry/open-api/tree/develop
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=develop

OpenAPI for Python, Release 0.0.1

2 CONTENTS:

CHAPTER

ONE

CONTRIBUTING TO OPENAPI FOR PYTHON

Note: As a general rule of thumb, OpenAPI for Python applies PEP 8 styling, with some important differences.

Branch Unit Tests
latest

v.0.1

develop

What makes an API idiomatic?

One of my favorite ways of thinking about idiomatic design comes from a talk given by Luciano Ramalho at Pycon
20165 where he listed traits of a Pythonic API as being:

• don’t force [the user] to write boilerplate code

• provide ready to use functions and objects

• don’t force [the user] to subclass unless there’s a very good reason

• include the batteries: make easy tasks easy

• are simple to use but not simplistic: make hard tasks possible

• leverage the Python data model to:

– provide objects that behave as you expect

– avoid boilerplate through introspection (reflection) and metaprogramming.

Contents:

• Design Philosophy

• Style Guide

5 https://www.youtube.com/watch?v=k55d3ZUF3ZQ

3

https://www.python.org/dev/peps/pep-0008
https://github.com/insightindustry/open-api/tree/master
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=latest
https://github.com/insightindustry/open-api/tree/v.0.1.0
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=v.0.1.0
https://github.com/insightindustry/open-api/tree/develop
https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=develop
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ
https://www.youtube.com/watch?v=k55d3ZUF3ZQ

OpenAPI for Python, Release 0.0.1

– Basic Conventions

– Naming Conventions

– Design Conventions

– Documentation Conventions

* Sphinx

* Docstrings

• Dependencies

• Preparing Your Development Environment

• Ideas and Feature Requests

• Testing

• Submitting Pull Requests

• Building Documentation

• References

1.1 Design Philosophy

OpenAPI for Python is meant to be a “beautiful” and “usable” library. That means that it should offer an idiomatic
API that:

• works out of the box as intended,

• minimizes “bootstrapping” to produce meaningful output, and

• does not force users to understand how it does what it does.

In other words:

Users should simply be able to drive the car without looking at the engine.

1.2 Style Guide

1.2.1 Basic Conventions

• Do not terminate lines with semicolons.

• Line length should have a maximum of approximately 90 characters. If in doubt, make a longer line or break
the line between clear concepts.

• Each class should be contained in its own file.

• If a file runs longer than 2,000 lines. . . it should probably be refactored and split.

• All imports should occur at the top of the file.

• Do not use single-line conditions:

4 Chapter 1. Contributing to OpenAPI for Python

OpenAPI for Python, Release 0.0.1

GOOD
if x:
do_something()

BAD
if x: do_something()

• When testing if an object has a value, be sure to use if x is None: or if x is not None. Do not
confuse this with if x: and if not x:.

• Use the if x: construction for testing truthiness, and if not x: for testing falsiness. This is different
from testing:

– if x is True:

– if x is False:

– if x is None:

• As of right now, because we feel that it negatively impacts readability and is less-widely used in the community,
we are not using type annotations.

1.2.2 Naming Conventions

• variable_name and not variableName or VariableName. Should be a noun that describes what
information is contained in the variable. If a bool, preface with is_ or has_ or similar question-word that
can be answered with a yes-or-no.

• function_name and not function_name or functionName. Should be an imperative that describes
what the function does (e.g. get_next_page).

• CONSTANT_NAME and not constant_name or ConstantName.

• ClassName and not class_name or Class_Name.

1.2.3 Design Conventions

• Functions at the module level can only be aware of objects either at a higher scope or singletons (which effec-
tively have a higher scope).

• Functions and methods can use one positional argument (other than self or cls) without a default value. Any
other arguments must be keyword arguments with default value given.

def do_some_function(argument):
rest of function...

def do_some_function(first_arg,
second_arg = None,
third_arg = True):

rest of function ...

• Functions and methods that accept values should start by validating their input, throwing exceptions as appro-
priate.

• When defining a class, define all attributes in __init__.

• When defining a class, start by defining its attributes and methods as private using a single-underscore prefix.
Then, only once they’re implemented, decide if they should be public.

1.2. Style Guide 5

OpenAPI for Python, Release 0.0.1

• Don’t be afraid of the private attribute/public property/public setter pattern:

class SomeClass(object):
def __init__(*args, **kwargs):

self._private_attribute = None

@property
def private_attribute(self):

custom logic which may override the default return

return self._private_attribute

@setter.private_attribute
def private_attribute(self, value):
custom logic that creates modified_value

self._private_attribute = modified_value

• Separate a function or method’s final (or default) return from the rest of the code with a blank line (except
for single-line functions/methods).

1.2.4 Documentation Conventions

We are very big believers in documentation (maybe you can tell). To document OpenAPI for Python we rely on
several tools:

Sphinx1

Sphinx1 is used to organize the library’s documentation into this lovely readable format (which is also published to
ReadTheDocs2). This documentation is written in reStructuredText3 files which are stored in <project>/docs.

Tip: As a general rule of thumb, we try to apply the ReadTheDocs2 own Documentation Style Guide4 to our RST
documentation.

Hint: To build the HTML documentation locally:

1. In a terminal, navigate to <project>/docs.

2. Execute make html.

When built locally, the HTML output of the documentation will be available at ./docs/_build/index.html.

Docstrings

• Docstrings are used to document the actual source code itself. When writing docstrings we adhere to the con-
ventions outlined in PEP 257.

1 http://sphinx-doc.org
2 https://readthedocs.org
3 http://www.sphinx-doc.org/en/stable/rest.html
4 http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

6 Chapter 1. Contributing to OpenAPI for Python

http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
https://readthedocs.org
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html
https://www.python.org/dev/peps/pep-0257
http://sphinx-doc.org
https://readthedocs.org
http://www.sphinx-doc.org/en/stable/rest.html
http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

OpenAPI for Python, Release 0.0.1

1.3 Dependencies

• PyYAML v3.10 or higher

• simplejson v3.0 or higher

• Validator-Collection v1.3.0 or higher

1.4 Preparing Your Development Environment

In order to prepare your local development environment, you should:

1. Fork the Git repository.

2. Clone your forked repository.

3. Set up a virtual environment (optional).

4. Install dependencies:

open-api/ $ pip install -r requirements.txt

And you should be good to go!

1.5 Ideas and Feature Requests

Check for open issues or create a new issue to start a discussion around a bug or feature idea.

1.6 Testing

If you’ve added a new feature, we recommend you:

• create local unit tests to verify that your feature works as expected, and

• run local unit tests before you submit the pull request to make sure nothing else got broken by accident.

See also:

For more information about the OpenAPI for Python testing approach please see: Testing OpenAPI for Python

1.7 Submitting Pull Requests

After you have made changes that you think are ready to be included in the main library, submit a pull request on
Github and one of our developers will review your changes. If they’re ready (meaning they’re well documented, pass
unit tests, etc.) then they’ll be merged back into the main repository and slated for inclusion in the next release.

1.8 Building Documentation

In order to build documentation locally, you can do so from the command line using:

1.3. Dependencies 7

https://github.com/yaml/pyyaml
https://simplejson.readthedocs.io/en/latest/
https://github.com/insightindustry/validator-collection
https://github.com/insightindustry/open-api
https://github.com/insightindustry/open-api/issues

OpenAPI for Python, Release 0.0.1

open-api/ $ cd docs
open-api/docs $ make html

When the build process has finished, the HTML documentation will be locally available at:

open-api/docs/_build/html/index.html

Note: Built documentation (the HTML) is not included in the project’s Git repository. If you need local documenta-
tion, you’ll need to build it.

1.9 References

8 Chapter 1. Contributing to OpenAPI for Python

CHAPTER

TWO

TESTING OPENAPI FOR PYTHON

Contents

• Testing OpenAPI for Python

– Testing Philosophy

– Test Organization

– Configuring & Running Tests

* Installing with the Test Suite

* Command-line Options

* Configuration File

* Running Tests

– Skipping Tests

– Incremental Tests

2.1 Testing Philosophy

Note: Unit tests for OpenAPI for Python are written using pytest1 and a comprehensive set of test automation are
provided by tox2.

There are many schools of thought when it comes to test design. When building OpenAPI for Python, we decided to
focus on practicality. That means:

• DRY is good, KISS is better. To avoid repetition, our test suite makes extensive use of fixtures, parametrization,
and decorator-driven behavior. This minimizes the number of test functions that are nearly-identical. However,
there are certain elements of code that are repeated in almost all test functions, as doing so will make future
readability and maintenance of the test suite easier.

• Coverage matters. . . kind of. We have documented the primary intended behavior of every function in Ope-
nAPI for Python, and the most-likely failure modes that can be expected. At the time of writing, we have
about 85% code coverage. Yes, yes: We know that is less than 100%. But there are edge cases which are

1 https://docs.pytest.org/en/latest/
2 https://tox.readthedocs.io

9

https://docs.pytest.org/en/latest/
https://tox.readthedocs.io
https://docs.pytest.org/en/latest/
https://tox.readthedocs.io

OpenAPI for Python, Release 0.0.1

almost impossible to bring about, based on confluences of factors in the wide world. Our goal is to test the key
functionality, and as bugs are uncovered to add to the test functions as necessary.

• Sample Documents Matter. The test suite relies on an extended set of sample OpenAPI documents, some of
which have been collected from real (open-source) API resources. The objective is to ensure that we have solid
and demonstrable support for the entire OpenAPI Specification.

2.2 Test Organization

Each individual test module (e.g. test_OpenAPI.py) corresponds to a conceptual grouping of functionality. For
example:

• test_OpenAPI.py tests the OpenAPI class and its methods

Certain test modules are tightly coupled, as the behavior in one test module may have implications on the execution
of tests in another. These test modules use a numbering convention to ensure that they are executed in their required
order, so that test_1_NAME.py is always executed before test_2_NAME.py.

2.3 Configuring & Running Tests

2.3.1 Installing with the Test Suite

2.3.2 Command-line Options

OpenAPI for Python does not use any custom command-line options in its test suite.

Tip: For a full list of the CLI options, including the defaults available, try:

open-api $ cd tests/
open-api/tests/ $ pytest --help

2.3.3 Configuration File

Because OpenAPI for Python has a very simple test suite, we have not prepared a pytest.ini configuration file.

2.3.4 Running Tests

2.4 Skipping Tests

Note: Because of the simplicity of OpenAPI for Python, the test suite does not currently support any test skipping.

10 Chapter 2. Testing OpenAPI for Python

https://github.com/OAI/OpenAPI-Specification/

OpenAPI for Python, Release 0.0.1

2.5 Incremental Tests

Note: The OpenAPI for Python test suite does support incremental testing using, however at the moment none of
the tests designed rely on this functionality.

A variety of test functions are designed to test related functionality. As a result, they are designed to execute incre-
mentally. In order to execute tests incrementally, they need to be defined as methods within a class that you decorate
with the @pytest.mark.incremental decorator as shown below:

@pytest.mark.incremental
class TestIncremental(object):

def test_function1(self):
pass

def test_modification(self):
assert 0

def test_modification2(self):
pass

This class will execute the TestIncremental.test_function1() test, execute and fail on the
TestIncremental.test_modification() test, and automatically fail TestIncremental.
test_modification2() because of the .test_modification() failure.

To pass state between incremental tests, add a state argument to their method definitions. For example:

@pytest.mark.incremental
class TestIncremental(object):

def test_function(self, state):
state.is_logged_in = True
assert state.is_logged_in = True

def test_modification1(self, state):
assert state.is_logged_in is True
state.is_logged_in = False
assert state.is_logged_in is False

def test_modification2(self, state):
assert state.is_logged_in is True

Given the example above, the third test (test_modification2) will fail because test_modification up-
dated the value of state.is_logged_in.

Note: state is instantiated at the level of the entire test session (one run of the test suite). As a result, it can be
affected by tests in other test modules.

2.5. Incremental Tests 11

OpenAPI for Python, Release 0.0.1

12 Chapter 2. Testing OpenAPI for Python

CHAPTER

THREE

RELEASE HISTORY

Contents

• Release History

– Release 0.1.0

3.1 Release 0.1.0

• First public release

13

https://travis-ci.org/insightindustry/open-api
https://codecov.io/gh/insightindustry/open-api
http://open-api.readthedocs.io/en/latest/?badge=v.0.1.0

OpenAPI for Python, Release 0.0.1

14 Chapter 3. Release History

CHAPTER

FOUR

GLOSSARY

JavaScript Object Notation (JSON) A lightweight data-interchange format that has become the de facto standard
for communication across internet-enabled APIs.

For a formal definition, please see the ECMA-404 Standard: JSON Data Interchange Syntax

De-serialization De-Serialization - as you can probably guess - is the reverse of serialization. It’s the process whereby
data is received in one format (say a JSON string) and is converted into a Python object that you can more easily
work with in your Python code.

Think of it this way: A web app written in JavaScript needs to ask your Python code to register a user. Your
Python code will need to know that user’s details to register the user. So how does the web app deliver that
information to your Python code? It’ll most typically send JSON - but your Python code will need to then
de-serialize (translate) it from JSON into an object representation (your User object) that it can work with.

OpenAPI An OpenAPI document (which may be a single file or a collection of files) is a human and machine-readable
formal description of a REST API that conforms to the OpenAPI Specification v.3.0 or later.

Per the OpenAPI Initiative:

The OpenAPI Specification (OAS) defines a standard, programming language-agnostic interface de-
scription for REST APIs, which allows both humans and computers to discover and understand the
capabilities of a service without requiring access to source code, additional documentation, or in-
spection of network traffic.

When properly defined via OpenAPI, a consumer can understand and interact with the remote service
with a minimal amount of implementation logic. Similar to what interface descriptions have done for
lower-level programming, the OpenAPI Specification removes guesswork in calling a service.

The specification is a community-driven open source collaboration within the OpenAPI Inititative, a Linux
Foundation Collaborative Project.

Serialization Serialization is a process where a Python object is converted into a different format, typically more
suited to transmission to or interpretation by some other program.

Think of it this way: You’ve got a virtual representation of some information in your Python code. It’s an object
that you can work with in your Python code. But how do you give that information to some other application (like
a web app) written in JavaScript? You serialize (translate) it into a format that other language can understand.

Swagger Swagger was an earlier form of the OpenAPI Specification that was donated by SmartBear to the OpenAPI
Initiative in 2015. The Swagger v.2.0 format was formally re-named the OpenAPI Specification v.2.0 and
formed the basis for the development of the current OpenAPI Specification v.3.0.

YAML Ain’t a Markup Language (YAML) YAML is a text-based data serialization format similar in some respects
to JSON. For more information, please see the YAML 1.2 (3rd Edition) Specification.

15

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
https://github.com/OAI/OpenAPI-Specification/
https://www.openapis.org/
http://www.openapis.org
https://github.com/OAI/OpenAPI-Specification/
https://www.openapis.org/
https://www.openapis.org/
https://github.com/OAI/OpenAPI-Specification/
http://yaml.org/spec/1.2/spec.html

OpenAPI for Python, Release 0.0.1

Note: If we’re being absolutely formal, JSON is actually a subset of YAML’s syntax. But that’s being needlessly
formal.

16 Chapter 4. Glossary

CHAPTER

FIVE

OPENAPI FOR PYTHON LICENSE

MIT License

Copyright (c) 2019 Insight Industry Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

OpenAPI for Python is a Python library that provides Python support for documents written in the OpenAPI Spec-
ification. Use the library to programmatically read, construct, and validate descriptions of RESTful APIs compliant
with version 3 of the OpenAPI Standard. Specific features include:

• de-serializing existing OpenAPI documents from file or URL

• traversing the entire document structure, whether self-contained or using $ref

• programmatically modifying the specification of API endpoints, requests, and responses

• serializing your API description to OpenAPI v.3.0

• providing validation and error-checking for requests against a RESTful API and responses generated by a REST-
ful API

The library has been extensively tested on Python 2.7, 3.4, 3.5, 3.6, and 3.7.

17

https://github.com/OAI/OpenAPI-Specification/
https://github.com/OAI/OpenAPI-Specification/

OpenAPI for Python, Release 0.0.1

18 Chapter 5. OpenAPI for Python License

CHAPTER

SIX

INSTALLATION

To install OpenAPI for Python, just execute:

$ pip install open-api

6.1 Dependencies

• PyYAML v3.10 or higher

• simplejson v3.0 or higher

• Validator-Collection v1.3.0 or higher

19

https://github.com/yaml/pyyaml
https://simplejson.readthedocs.io/en/latest/
https://github.com/insightindustry/validator-collection

OpenAPI for Python, Release 0.0.1

20 Chapter 6. Installation

CHAPTER

SEVEN

WHY OPENAPI FOR PYTHON

If you’ve been involved in the development or documentation of RESTful APIs, odds are you have come across either
Swagger (a.k.a. OpenAPI v.2.0) or the OpenAPI Initiative. While the standard is an excellent format for describing
RESTful APIs in a comprehensive fashion that is both machine and human-readable, the utility of the standard for
developers working in Python is only as good as the Python tooling that exists for that standard.

OpenAPI for Python is meant to be a foundational library for OpenAPI tooling in Python. It is to some extent inspired
by (but does not directly leverage) the excellent work in:

• openapi-core

• pyswagger

• openapi3

Where OpenAPI for Python differs from these other libraries is in three key areas:

• Full Standard Support. Where each of the projects listed above fall down is in their support of the entire OpenAPI
standard. By design, OpenAPI for Python supports the entire OpenAPI v.3 standard, when programmatically
editing an OpenAPI specification in Python, when reading an OpenAPI specification from JSON or YAML, or
when writing an OpenAPI specification to JSON or YAML.

• Comprehensive Object Model and Consistent API. As mentioned, the OpenAPI for Python object model is
intentionally designed to support the full OpenAPI v.3 standard, and that object model is inherently designed to
provide a consistent, practical, and inherently Pythonic API for use by Python developers.

• Microframework Architecture. The OpenAPI for Python library is meant to be a foundational utility, and not
a full-featured application. If you are looking for code generators that can implement a RESTful API based on
an OpenAPI specification, then you should look elsewhere. OpenAPI for Python cannot do that kind of thing
- but it can enable that kind of thing and make the development of robust API test suites, API code-generators,
API documentation platforms, etc. in Python easier. If those kinds of libraries and applications are a house,
OpenAPI for Python is meant to provide the bricks.

7.1 Key OpenAPI for Python Features

• Easy to adopt: Minimal dependencies, with native support for Python 2.7 and Python 3.4 and higher, and
entirely pip installable.

• With one method call, generate a Python representation of an OpenAPI specification from a URL, locally on-
disk, or from a string object.

• With one method call, output an OpenAPI specification in whole or in part from its Python object representation.

• Validate inbound HTTP requests against their corresponding API endpoints.

• Validate your API’s output.

21

https://www.openapis.org/
https://github.com/p1c2u/openapi-core
https://github.com/pyopenapi/pyswagger
https://github.com/Dorthu/openapi3

OpenAPI for Python, Release 0.0.1

7.2 OpenAPI for Python vs Alternatives

22 Chapter 7. Why OpenAPI for Python

CHAPTER

EIGHT

HELLO, WORLD AND BASIC USAGE

8.1 1. Import OpenAPI for Python

from open_api import OpenAPI

8.2 2. Load an Existing OpenAPI Specification

From URL
specification = OpenAPI.from_url('http://testing.dev/openapi.yaml')
specification = OpenAPI.from_url('http://testing.dev/openapi.json')

From File
specification = OpenAPI.from_file('../openapi.yaml')
specification = OpenAPI.from_file('../openapi.json')

8.3 3. Modify the OpenAPI Specification

specification.title = 'My Updated Title'

my_new_path = specification.add_path(id = 'my_new_path',
path = 'some/new/path/\{id\}',
method = 'GET')

my_new_path_again = specification.get_path(id = 'my_new_path',
method = 'GET')

The entire OpenAPI Specification is available and supported. See API Reference
for more details.

8.4 4. Validate Complete Specification for Error Checking

specification.validate(target_file = './error.log')

23

OpenAPI for Python, Release 0.0.1

8.5 5. Validate an HTTP Request

By Path
request_body = request.json
request_headers = request.headers
is_valid = specification.is_valid_request(request_body,

url = 'http://testing.dev/some/new/path',
method = 'POST',
headers = request_headers)

8.6 6. Validate an API Response

By Path
is_valid = specification.is_valid_response(response_body,

url = 'http://testing.dev/some/new/path/',
method = 'POST',
headers = response_headers)

By Schema Object
schema_object = specification.get_schema(object_id = 'my_new_path')
is_valid = schema_object.is_valid(response_body)

8.7 7. Output an OpenAPI Specification

In-Memory / In Object Form
json_string = specification.to_json()
yaml_string = specification.to_yaml()
python_dict = specification.to_dict()

To File
specification.to_json(target_file = './openapi.json')
specification.to_yaml(target_file = './openapi.yaml')

24 Chapter 8. Hello, World and Basic Usage

CHAPTER

NINE

QUESTIONS AND ISSUES

You can ask questions and report issues on the project’s Github Issues Page

25

https://github.com/insightindustry/openapi/issues

OpenAPI for Python, Release 0.0.1

26 Chapter 9. Questions and Issues

CHAPTER

TEN

CONTRIBUTING

We welcome contributions and pull requests! For more information, please see the Contributor Guide

27

OpenAPI for Python, Release 0.0.1

28 Chapter 10. Contributing

CHAPTER

ELEVEN

TESTING

We use TravisCI for our build automation and ReadTheDocs for our documentation.

Detailed information about our test suite and how to run tests locally can be found in our Testing Reference.

29

http://travisci.org
https://readthedocs.org

OpenAPI for Python, Release 0.0.1

30 Chapter 11. Testing

CHAPTER

TWELVE

LICENSE

OpenAPI for Python is made available under an MIT License.

12.1 Indices and tables

• genindex

• modindex

• search

31

OpenAPI for Python, Release 0.0.1

32 Chapter 12. License

PYTHON MODULE INDEX

t
tests, 9

33

OpenAPI for Python, Release 0.0.1

34 Python Module Index

INDEX

D
De-serialization, 15

J
JavaScript Object Notation (JSON), 15

O
OpenAPI, 15

P
Python Enhancement Proposals

PEP 257, 6
PEP 8, 3

S
Serialization, 15
Swagger, 15

T
tests (module), 9

Y
YAML Ain’t a Markup Language (YAML), 15

35

	Contributing to OpenAPI for Python
	Design Philosophy
	Style Guide
	Basic Conventions
	Naming Conventions
	Design Conventions
	Documentation Conventions

	Dependencies
	Preparing Your Development Environment
	Ideas and Feature Requests
	Testing
	Submitting Pull Requests
	Building Documentation
	References

	Testing OpenAPI for Python
	Testing Philosophy
	Test Organization
	Configuring & Running Tests
	Installing with the Test Suite
	Command-line Options
	Configuration File
	Running Tests

	Skipping Tests
	Incremental Tests

	Release History
	Release 0.1.0

	Glossary
	OpenAPI for Python License
	Installation
	Dependencies

	Why OpenAPI for Python
	Key OpenAPI for Python Features
	OpenAPI for Python vs Alternatives

	Hello, World and Basic Usage
	1. Import OpenAPI for Python
	2. Load an Existing OpenAPI Specification
	3. Modify the OpenAPI Specification
	4. Validate Complete Specification for Error Checking
	5. Validate an HTTP Request
	6. Validate an API Response
	7. Output an OpenAPI Specification

	Questions and Issues
	Contributing
	Testing
	License
	Indices and tables

	Python Module Index

